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Abstract—Various lattice statistical-thermodynamic theories after E. A. Guggenheim [Guggenheim, 1952] have been
proposed with different assumptions on nonrandomness, the explicitness of the solution, and the model parameters.
During the last decade, the present anthors proposed a general approximation tool to the quasichemical solution of
the nonrandom lattice-fluid combinatory and formulated a new rigorous EOS and the improved versions including
the unified group contribution extensions and systems with strong association. In this study, developments of those
EOSs are discussed with emphasis on the practical utility of each model.
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INTRODUCTION

Most thermodynamic properties of interest in phase equilibria
can be calculated from an equation of state (EOS). However,
most EOS models do not accurately describe properties of the
condensed phase. Alternately, behaviors n the liquid phase are
described in terms of excess functions. However, they cannot be
applied to pure fluids and have intrinsic limitations at high-pres-
sure.

Thus, until the present time, efforts had been placed on the
EOS which 15 applicable to the liquid phase. Flory opened a new
era of EOS theories for condensed phase [Flory, 1970]. Since
then, many EOS theories have been proposed They can be clas-
sified as two approaches: radial distnbution finction theory such
as pertrbed hard chains and lattice-hole theories. After Guggen-
heim [Guggenheim, 1952], many lattice-hole models appeared
[eg. Sanchez and Lacombe, 1976, Panayiotou and Vera, 1982
etc.]| However, due to the difficulty of explicitly solving the quasi-
chemical approximation m the lattice theory, existing models were
obtained with drastic simplifications. The present authors proposed
an approximation to the nonrandomness factor to solve the fun-
damental lattice-hole equation explicitly. By this approximation
technique, the authors proposed series of new EOSs such as
NLF and MF-NLF EOS in recent years. In this paper, we pre-
sent a discussion of the historical perspective of the EOSs and
the universal group contribution applications to the EOS.

Also, based on Veytsman statistics [Veytsmarn, 1993] for pro-
ton donor-acceptor, the early EOSs were extended to apply to
systems with association. Discussion was mncluded for these new
extensions with emphasis on phase equilibria of associated mix-
tures.
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BASIC LATTICE-FLUID THEORY

We assume that the partition function can be separated by
the physical part and chemical contribution due to the existence
of hydrogen bonding,

Q=02 L2y, (L

Each contribution is defined below.
1. Physical Combinatory
In a 3-D lattice of the ceordimation number z, molecules of
component i are assumed to occupy 1, sites of the unit cell size
Vi They interact with surface area g, with neighboring segment
of r-mers. For lnear or branched chains, the number of external
contacts za,=(z—2)r,+2(1—1) where ] is the bulkiness factor.
The configurational part of the nonrandom lattice partition
function may be written as follows in the quasichemical appro-
xXimation,

2)

The random contribution, g, 1s written in the Guggenheim-
Huggins-Miller approximation,

O =gaZu exp( —BU")

e =N, VTIN, (N I/N, 1y 3
The nonrandom contribution g, is given by

TINSII(NY/2)!T
- [ (Ny/2)] @
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Where N =N, +3Nr,, N,=N,+> N g, and N is the number
of vacant sites. N, is the number of i-j segment contacts. The
quantities with superscript zero denote the same for random mix-
mg.

N, is related to N}, in the quasichemical approximation.

N,=N,T, (5)

=, ()

Rl

exp{Pe, e, 2e,)}
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where [3 denotes 1/kT and €, is the absolute value of interaction
energy. Eq. (5) subject to the mass balance constraints,

2N!,+ZNU=ZN!q}(i=1,2,...,c) (N

The “nonrandomness factor’ T, may be obtained from the sim-
ultaneous solution of Eqgs. (5), (6) and mass balance relations. It
can be expressed in an explicit form only for binary mixtures in
systems with no vacant sites or pure systems. Once I'; 1s known,
the mean potential energy is written as

U=XEN,(~g) (@)

iz

Sanchez-Lacombe [Sanchez and Lacombe, 1976] imitiated the
random lattice-fluid EOS with the assumptions of no nonrandom-
ness and ‘large Z' approximation. Okada and Nose [Okada and
Nose, 1981 ] included the nonrandomness of molecules and va-
cant sites as described above. However, the solution requires a
numerical procedure. Panayiotou and Vera [Panayiotou and Vera,
1982] and Kumar et al. [Kumar et al., 1986] assumed that va-
cant sites are random. Therefore, their formulation yields g,.=1
for pure systems. However, they used the exact solution on the
random vacant site basis for binary mixtures. They should have
used numerical procedures for a mixture with more than two
components. On this basis, their solution is explicit for general
multicomponent mixtures. You et al. [You et al., 1994a, b] ob-
tained a general explicit solution by expanding Helmholtz free
energy and by mcluding nonrandom vacant sites.

2. Hydrogen-Bonding Contribution

Some components in the mixture have hydrogen donor groups
and/or acceptor groups. The number of hydrogen donor groups
of type k in species iis d, and the number of acceptor groups
of type / m species j 13 a;. The total number of donor types 1s m
and the total number of acceptor types is n. Then the total mum-
ber of doner groups of type I (N.) and that of acceptor groups
of types k (N%) are given by

N,=X dN, Ni=X N, ©)
We also define the total number of donor-acceptor pair (N ), tun-
paired donors (N°) and unpaired acceptors (N) as functions
of the number of i-] hydrogen bond pair (N;,").

Nyz= Z ZnNu B NEE: Ni‘i sz;m (10)

Now Veytsman statistics allows us to write the partition func-
tion for the hydrogen bond contribution,

N! | 2N
NHBlnNHBFHXI\I_HB exp(— BNfBAnHE) (11)
o ooborog

H

where
AP-URTS? 1)
and the superscript HB denotes the property change on a hy-
drogen-bond formation.
THERMODYNAMIC FUNCTIONS
We maximize In Q. with respect to N,; and In QF; with re-
spect to N;m at constant volume and temperature. We assume
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N, and Nj® are independent in finding the maximum terms.
This approximation 1 sinilar to that by Sanchez and Panay-
iotou [Sanchez and Panayiotou, 1993].

For hydrogen bonding contribution the maximization condi-
tions are given by,

NN, =NENG” exp(—BALS)
=N, X, NN, 30 Nexp(—BATT) (13)

Eq. (13) yields a quadratic equation for N} when applied to
a general mixture with a single hydrogen-bonding fluid. When
more than one group of donors or acceptors are present, they
have to be determined numerically. With N;* knowr, Helm-
holtz free energy due to the hydrogen-bonding contribution is
readily written in the Sterling approximation.

B A= ~In25, =N, InN, X (N, N, N,)
YN INE -NE) N, NN
YN 1N N)
+ X ¥ (BN AL N TN N (14
g
As we mentioned above, Eq. (6) is a set of implicit equations
even for a binary mixture. Thus an expansion method was de-

veloped to yield an explicit Helmholtz free energy as a sum of
the reference athermal term and the residual term.

BAL—=—InCY, = BA;,T;'*‘BA#?; (15)

BA}%#ZNEL +ZN! InN, —ZN!—N, InN,+N,

—zN Inp,+N, In(1 -p)~2N, 1n[1+(—— )pi[ (16)
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where
PNL/N,, p=2p. 8=Na/N,, 6=28,1,~ 2xp, and q,~ 2xg.
The unit cell size is defined by

V=3 S NGV N (18)

Finally, we have the Helmholtz free energy as a sum of the
physical and chemical contributions.

A=At Al (19)

Other thermodynamic functions EOS and chemical potential
follow from the Helmholtz free energy. We named Eq. (19) as
the NLF-HB model. When there is no formation of hydrogen
bondmg, the NLF model reduces to NLF model.

Kumar et al. [Kumar et al., 1986] obtained an expansion for
I, on the vacant site free bams and obtained an expansion for
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Helmholtz free energy. A more consistent method of introduc-
mg quasichemical nomrandom effects 18 to mclude the nonrandom
vacant sites. In this case one has to use numerical procedures
even for binary mixtures as did Okada and Nose [Okada and
Nose, 19814, b].

We find that lattice-fluid theory-based EQOSs have potential
application to real fluids and that consistency and explicitness
may be improved [Lee and Yoo, 1998].

What we derived by Eq. (17) covers the rigorous second order
solution to the quasichemical approximation applicable to mix-
tures. Although the solution we obtained is explicit and ther-
modynamic functions based on this solution (NLF) are applica-
ble quantitatively to the phase equilibrium calculations of wide
range of complex mixtures including systems with association,
Eq. (17) 13 still quite complex. Therefore, an empirical expan-
sion was derived for A}, from a lattice-fluid based nonran-
dom multifluid (MF) approximation. The generalized result for
nonrandom vacant sites 18 derived to give

BAL e[} U7 dB— (Z%)ze{ln{ze@} Be!} 20)
where

T,=xp[P(e;—&.)] (21

We named this approximation as MF-NLF. Summation of
Eqg. (14), (16) and (20) becomes the MF-NLF-HB model. When
there 15 no association in a mixture, the MF-NLF-HB reduces
to MF-NLF model.

Extensive study indicates this approximation i probably as
accurate as the NLF-HB theory and computationally more effi-
cient. Details of this model will be omitted here.

MOLECULAR PARAMETERS

We discussed four different EOSs above: NLF, NLF-HB, MF-
NLF and MF-NLF-HB. As usual with lattice theories, z=10 and
V=9.75 cm’/mol are fixed. All we need are 1, and €, for pure
fluids. For systems with hydrogen bonding, additional parameters
are necessary (i.e, Uy =—25.1 kJ/mol and S5 = 2.65x107° kI/
mol.K) for each hydrogen bond pair. The pure component para-
meters are fitted to experimental data as a temperature-depend-
ent formula,

e /k=E+E(T—T)+E.(T InT,/T+T—T,} (22)
=R +R(T-T)+R(T InT,/T+T—-T,) (23)
For mixtures a binary parameter is introduced for ¢, as

g, =(e,8,) " (1-},) (24)

where A, is the binary interaction parameter.
GROUP CONTRIBUTION OF PARAMETERS

The functional group contribution methods, which have a long
history, have been powerful tools for predicting properties of pure
fluids or mixtures from expenimental data on related substances.
The lattice theory has widely been used to describe excess pro-

perties. UNIFAC and ASOG are among them. Tt is noteworthy
that the nonrandom contnbution represented by Eq. (4) may be
evaluated either on a molecular basis or on a group basis [Gug-
genheim, 1952]. On the group basis, Smirnova and Victorov
[Smimova and Victorov, 1987] developed an mmphat lattice-
fluid EOS with the bulkiness factor.

High and Darmmer [High and Darmmer, 1990] have been working
on the group contribution method for polymer systems using
Panayiotou and Vera EOS. The present authors proposed a new
concept of umversal group contribution [Yoo et al., 1997]. The
basis is the assumption that group parameters are identical whe-
ther molecules are in pure fluids or in mixtures. The group con-
tribution approach is applied to determine the parameters as

=2V, 00 (25)

£ E
&, =22 8:8]e, (26)
=1j=1
qS may be determined from 1% if we require that r, and q, satisfy
zq,=(z— 2ir,+2(1-1), for example.

Although lattice models such as NLF, MF-NLF and their HB
versions and group contribution extensions described above are
not intended for aromatics and cyclic compounds, the application
has been extended to such compounds empirically on the mole-
cular level. However, when applied to the group, level closed
chains present difficulties in relating q5 and r Without justifi-
cations ¢ is equal to 1 this work. Two group parameters, 19
and €%, are determined from values of temperature-dependent

i

r, &, and A, data.

i =if

APPLICATIONS AND DISCUSSIONS

Lattice-fluid theories proposed by the present authors are clas-
sified as NLF, NLF-HB, MF-NLF, MF-NLF-HB models and
GC-NLF and GC-MF-NLF. All of these six types of models are
critically and extensively used to calculate various thermodyna-
mic properties of pure fluids such as vapor pressures, vapor- and
liqud-densities, and enthalpy of vaponization. Also, these models
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Fig. 1. Calculated saturated temperature-density diagram for
pure 1-propanol.
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Fig. 3. Cakulated temperature-specific volume diagram for PEG.
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Fig. 4. Calculated isothermal P-x-y equilibria for n-hexane-eth-
anol system by NLF-HB EOS (A,,=0.030).
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Fig. 5. Calculated isobaric T-x-y equilibria for n-hexane-etha-
nol system by NLF-HB EOS (A,,=0.030).
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Fig. 6. Calculated isothermal P-x-y equilibria for heptane/etha-
nol at 303.15, 343.15 K by MF-NLF-HB EOS (A,,=0357).

are applied to calculate and predict varnious types of phase equi-
libria of mixtures such as VLLE, LLE and VSE, density, excess
volume, excess enthalpy and critical locy, ete. Tested mixtures m-
cluding organic compounds and macromolecules with or without
the existence of association and details of comparison with data
or with other models may be found in the paper cited.

For NLE, MF-NLF and their universal group contribution ex-
tensions, extensive comparison with these models and various
phase equilibrium data have been made elsewhere [You et al.,
1994a, b, 1995, 19974, b]. Thus, in this work, emphasis was given
to an extensive comparison of NLF-HB and MF-NLF-HB mod-
els with the data of physical properties of 35 self-associated
pure alcohols, and VLE, excess volume and excess enthalpy of
20 mixed hydrocarbon-alcohol systems. Results demonstrated
that the two approaches (i.e., NLF-HB and MF-NLF-HB) equi-
valently fit various experimental data quantitatively enough. We
omit here detailed illustration; however, the new lathice-fluid EOSs
with the combination of hydrogen bonding theory after Veytsman
[Veytsman, 1993] fit associated mixtures well.
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Fig. 7. Calculated isobaric T-x-y equilibria for heptane/ethanol
at 101.3 kPa by MF-NLF-HB EOS (3,,=0357).
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CONCLUSION

Lattice-fluid theories mainly developed by the present authors
in recent years were reviewed and compared with data of var-
10us pure fluids and binary mixtures. In particular, we found that
the new two EQSs with hydrogen bonding contribution can be
quantitatively applicable to mixtures by association.
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