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Abstract-V~ious lance statisfical-thennodynanfic theories after E. A. Gnggeulldra [GuggellheinL 1952] have been 
proposed with different assumptions on nonmndomness, the explicitness of the solution, and the model parameters. 
During the last decade, the present authors proposed a general approximation tool to the quasichemical solution of 
the nonrandonl laNce-fired conlbinatory mKl fonnulated a new rigorous EOS and the improved versions including 
the unified group contribution extensions mid systeras with stt-ong association. In tiffs study, devdopraents of those 
EOSs are discussed with emphasis on the practical utility of each model. 
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INTRODUCTION 

Most thermodynamic properties of interest in phase equilibria 
can be calculated fi-ora an equation of state (EOS). However, 
most E�9 models do not accurately describe properties of  the 
condensed phase. Alternately, behaviors in the liquid phase are 
described in terms of excess functions. However, they cannot be 
applied to pure fluids and have inNnsic limitations at high-pres- 
sure. 

Thus, until the present time, effbrts had been placed on the 
EOS which is applicable to the liquid phase. FloGG opened a new 
era of EOS theories for condensed phase [Flory, 1970]. Since 
then, many EOS theories have been proposed They can be clas- 
sifted a,s two approaches: radial distribution function theory such 
as perturbed hard chains and laNce-hole theories. After Gnggen- 
heim [Guggenheim, 1952], many lattice-hole models appeared 
[e.g. Sanchez and Laconlbe, 1976; Panayiotou and Vex'a, 1982 
etc.] However, due to the difficulty of explicitly solving the quasi- 
chemical approxmralion in the lattice theory, existing models were 
obtained with drastic simplifications. The present authors proposed 
an approximation to the nonrandomness factor to solve the fun- 
damental lattice-hole equation explicitly. By this approximation 
technique, the authors proposed series of  new EOSs such as 
NLF and MF-NLF E�9 in recent years. In this paper, we pre- 
sent a discussion of  the historical perspective of the EOSs and 
the universal group contribution applications to the EOS. 

Also, based on Veytsraan statistics [Veytsraan, 1993] for pro- 
ton donor-acceptor, the early EOSs were extended to apply to 
systems with association. Discussion was included for these new 
extensions with emphasis on phase equilibria of  associated raL, c- 
b.tres. 
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BASIC LATTICE-FLUID THEORY 

We assume that the partition function can be separated by 
the physical part and chemical contribution clue to the existence 
of hydrogen bonding, 

f2c=f2~f2~E (1) 

Each contribution is defined below. 
1. Physical Combinatory 

In a 3-D lattice of the coordination number z, molecules of 
component i are assumed to occupy r~ sites of the unit cell size 
Vee. They interact with surface area q, with neighboring segment 
of r-raers. For linear or branched chains, the number of  external 
contacts zq,=(z-2)r,+2(1-/,) where/, is the bulkiness factor. 

The conftgm-ational part of the noraandonl lattice partition 
function may be wri~en as follows in the quasichemical appro- 
ximation, 

o;L~=g~g~ exp( ~u c) (2) 

The random contribution, gR is written in the Guggenheim- 
Huggins-Miller approximation, 

gR = (N, !/TIN, !)(N~ !/N, !)~ (3) 

The nonrandom contribution gN,~ is given by 

0 0 2 [FIN,,!FI(N/2)!] (4) 

g~= [FIN,,! FI(N,/2) ! ]~FINf * 

W~here N, =No +~N,r, ,  Nq =No +~N,q,  and No is the ntmlber 
of vacant sites. N v is the number of i-j segment contacts. The 
quantities with superscript zero denote the same fox random rabc- 
r a g .  

N v is related to N~, in the quasichemical approximation. 

N,~. :N,~ (5) 

F~ F,,F,,exp{~(e**+%, 2e,,)} (@ 
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where [3 denotes 1/kT and % is the absolute value of interaction 
energy. Eq. (5) subject to the mass balance constraints, 

2 N**+ E N,~ =zN, q,(i = 1,2 ..... c) (7) 

The 'nonmndomness factor' F,~ may be obtained from the sim- 
ultaneous solution of Eqs. (5), (6) and mass balance relations. It 
can be expressed in an explicit form only for binary mixktres in 
systems with no vacant sites or pure systems. Once F,~ is known, 
the mean potential energy is written as 

u ~ ] ~ Z N , / - e , )  (8) 

Sanchez-Lacombe [Sanchez and Lacombe, 1976] inihated the 
random lattice-fluid EOS with the assumptions of  no nc~ar~don> 
ness and qm~ge z ~ approximatioi~ Okada and Nose [Okada and 
Nose, 1 981 ] included the nonrandomness of molecules and va- 
cant sites as described above. However, the solution requires a 
numerical procedure. Panayiotou and Veto [Panayiotou and Veto, 
1982] and Kmnar et al. [Kumar et al., 1986] assumed that va- 
cant sites are random. Therefore, their formulation yields g ~ = l  
for pure systems. However, they used the exact solution on the 
random vacant site basis for binary mixtures. They should have 
used numerical procedures for a mixture with more than two 
components. On this basis, their solution is explicit for general 
mnlticomponent mixtures. You et al. [You et al., 1994a, b] ob- 
tained a general explicit solution by expanding Helmholtz free 
energy and by including nourandon~ vacant sites. 
2. Hydrogen-Bonding Contribution 

Some components in the mixture have hydrogen donor groups 
and/or acceptor groups. The number of hydrogen donor groups 
of type k in species i is d'~ and the number of  acceptor groups 
of type l in species j is a',. The total number of donor types is m 
and the total number of  acceptor types is n. Then the total num- 
ber of donor groups of type l (N~) and that of acceptor groups 
of types k (N~o) are givenby 

N*~ =ZI~N,, N:=ZI~N, (9) 

We also defme the total number of donor-acceptor pair (N~), un- 
(N,0) and unpaired acceptors (N0~e) as functions paired donors ~e 

of the number of i-j hydrogen bond pair (N,~e). 

N~e=EqE'N,~ e, N,~e=N~ E~N,~ e (10) 

Now Veytsman statistics allows us to write the partition fimc- 
tion for the hydrogen bond contribution, 

fy  = 1 ~- r N;[ r~ N'~! ~2-r@__~_l exp(_i~N,~BA~e) (11) 
H e  B, TjCn~I I B ,  THe i 1 I N T H e  i 1 l z : ~ k T H e  

where 

Are Are Are A;) =U,~ TS,~ (12) 

and the superscript l iB denotes the property change on a hy- 
drogen-bond formation. 

THERMODYNAMIC FUNCTIONS 

We maximize In tl~,e with respect to N,~ and In tl ;e with re- 
spect to N,~ e at constant volume and tempem~re. We assume 

N,j and N,)S e are independent in finding the maximum terms. 
This approximation is similar to that by Sanchez and Panay- 
iotou [Sanchez and Panayiotou, 1993]. 

For hydrogen bonding contribution the maximization condi- 
tions are given by, 

HB __ lle He He N,). N,-N,0 N0~ exp(-[3A,.~ ) 
a n H B  j m HB H e  =(Ne ~ l N , k  )(No ~=IN~ )exp([3A;) ) (13) 

Eq. (1 3) yields a qua&-atic equation for N~ B when applied to 
a general mixture with a single hydrogen-bonding fluid. When 
more than one group of donol-~ or acceptol-~ are present, they 
have to be determined numerically. With N,~ B known, Helm- 
holtz free energy due to the hydrogen-bonding contribution is 
readily written in the Sterling approximation. 

[3A~e -lnf2~e NHB lnN,-f(N'd lnN~-N'd) 
a 

m n 

+E(N,~ehlN,{ e N,~ e) E(N'olnN'o N'o) 

n 

+E(NJ, e lnNJ, e N0~ e) 
i 

+~:~,~..,)~: (BN~eA~e+N ~ e _ _ , ~  _.,j lnN,y e-N,~ e) (1 d) 
j 

As we mentioned above, Eq. (6) is a set of  implicit equations 
even for a binary mixture. Thus an expansion method was de- 
veloped to yield an explicit Helmholtz free energy as a sum of 
the reference athennal term and the residual term. 

c _ c c0t) d e )  [3A~L e lnQ~L P [3A~Le+I3A~Lp (15) 

f = l  f=0 f=0 

=~N,. hlp,+N0 ln (1 -p ) -~N a 11(1 + ( r ~ - l ) p  ] (16) 

a> 0A ~ 0 +1 32A ~ 0 

,>j k . 0 % ]  Z ,>j kk l  \ O g ~ l O g ~ ) ]  

=-Z~~ [Z Zo, o/, ~ 

where 

p~ N,r/N,o Zp,,0,  N,cL/Nq, 0 Z0,  rM Z E r ,  andq~ ZEcL. 

The unit cell size is defmed by 

V m n He/ c ~=Z,=, Z,=,N,~ Z,< N,r, (18) 

Finally, we have the Hehnholtz free energy as a sum of the 
physical and chemical contributions. 

A~ =A~,e+Aie (19) 

Other thermodynamic fimctions EOS and chemical potential 
follow from the Helmholtz fi-ee energy. We named Eq. (1 9) as 
the NLF-HB model. When there is no formation of hydrogen 
bondmg, the NLF model reduces to NLF model. 

Kmnar et al. [Kumar et al., 1986] obtained an expansion for 
F v on the vacant site free basis and obtained an expansion for 
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Helmholtz free energy. A more consistent method of introduc- 
ing quasichemical noi~-andom effects is to include the noi~arldom 
vacant sites. In this case one has to use numerical procedures 
even for binary mix,ires as did Okada and Nose [Okada and 
Nose, 1981a, b]. 

We find that lattice-fluid theory-based E�9 have potential 
application to real fluids mid that consistency and explicitness 
may be improved [Lee and 57oo, 1998]. 

What we derived by Eq. (17) covers the rigorous second order 
solution to the quasichemical approximation applicable to mix- 
~lres. Although the solution we obtained is explicit and ther- 
modynamic fimctions based on this solution (NLF) are applica- 
ble quantitatively to the phase equilibrium calculations of wide 
range of  complex mix,ires including systems with association, 
Eq. (17) is still quite complex. Therefore, an empirical expan- 
sion was derived for A~Lp from a laNce-fluid based nonran- 
dom multifluid (MY) approximation. The generalized result for 
nom-andom vacant sites is derived to give 

A~C~> ~ ~ (~-~__~ O,Iln(~ 0 -c +]+ [3 e,+ 1 (20) 

where 

%=xp[[3(%-s**)] (21) 

We named this approximation as MF-NLE Summation of  
Eq. (14), (16) and (20) becomes the MF-NLF-HB model. When 
there is no association in a mix,ire, the MF-NLF-HB reduces 
to M F - N L F  model. 

Extensive study indicates this approximation is probably as 
accurate as the NLF-HB theory and computationally more effi- 
cient Details of  this model will be omitted here. 

M O L E C U L A R  PARAMETERS 

We discussed four different EOSs above: NLF, NLF-HB, MF- 
NLF and MF-NLF-HB. As usual with lattice theories, z=10 and 
Vs 9.75 cm3/lnol are fixed. All we need are 1; and ~,j for pure 
fluids. For systems with hydrogen bonding, additional lmmmeters 
are necessary (i.e., U~ z =-25.1 kJ/mol and S~{ z= 2.65• -2 kJ/ 
mol.K) for each hydrogen bond pair. The pure component para- 
meters are fitted to experimental data as a tempera~lre-depend- 
ent formula, 

sjk=Eo+E~(T T0)+E~(Thff0/T+T To (22) 

r+ Ro+I~(T- To)+I~.(T InTo/T +T- To) (23) 

For mixtures a binary parameter is introduced for e,j as 

%=(a**%)1/~( 1 s (2d) 

where Z,: is the binary interaction parameter. 
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penes. UNIFAC and ASOG are among them. It is noteworthy 
that the nourandom contribution represented by Eq. (4) may be 
evaluated either on a molecular basis or on a group basis [Gug- 
genheim, 1952]. On the group basis, Smirnova and Victorov 
[Smmlova and Victorov, 1987] developed an implicit lattice- 
fluid EOS with the bulkiness factor. 

High and Danner [High mid Dannei; 1990] have been working 
on the group contribution method for polymer systems using 
Pauayiotou and Vera EOS. The present authors proposed a new 
concept of  universal group contribution [Yoo et al., 1997]. The 
basis is the assumption that group parameters are identical whe- 
ther molecules are in pure fluids or in mix~lres. The group con- 
tribution approach is applied to determine the parameters as 

r, Zv,~r~ (25) 

g g 

s,,=ZZg,~gj s~+ (26) 
~1j=1 

q~may be determined from r~ifwe require that r~ and g satisfy 
zq, = (z -  2)r,+ 2(1 -/,), for example. 

Although lattice models such as NLF, MF-NLF and their HB 
versions and group contiibutic~l extensions described above are 
not intended for aromatics and cyclic compounds, the application 
has been extended to such compounds empirically on the mole- 
cular level. Howevel, when applied to the group, level closed 
chains present difficulties in relating q~ and r~ Without justifi- 
cations q~ is equal to ~ in this work. Two group parameters, r~ 
and e~,, are determined from values of temperature-dependent 
r,, % and Z,; data. 

APPLICATIONS AND DISCUSSIONS 

Lattice-fluid theories proposed by the present authors are clas- 
sified as NLF, NLF-HB, MF-NLF, MF-NLF-HB models and 
GC-NLF and GC-MF-NLF. All of these six types of models are 
critically and extensively used to calculate various thermodyna- 
mic properties of pure finds such as vapor pressures, vapor- and 
liquid-densities, and enffmlpy of vaporization. Also, these models 

GROUP CONTRIBUTION OF PARAMETERS 

The functional group contlibution methods, which have a long 
history, have been powerful tools for predicting properties of pure 
fluids or mixtures fi-om expeiimental data on related substances. 
The lattice theory has widely been used to describe excess pro- 

Fig. 1. Calculated saturated temperature-density diagram for 
pure 1-propanol. 

Km~an J. Chem. Eng~(Vol. 17, No. 3) 
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Fig. 2. Calculated temperature-vapor pressure diagram for pure 
1-alcohols. 

Fig. 5. Calculated isobaric T-x-y equilibria for n-hexane-etha- 
nol system by NLF-HB EOS (~=0.030). 

Fig. 3. Calculated temperature-specific volume diagram for PEG. 

Fig. 4. Calculated isothermal P-x-y equilibria for n-hexane-eth- 
anol system by NLF-HB EOS 0~2=0.030). 

May, 2000 

Fig. 6. Calculated isothermal P-x-y equilibria for heptane/etlm- 
nol at 303.15, 343.15 K by MF-NLF-HB EOS (~=0357).  

are applied to calculate and predict various types of phase equi- 
libria of mixtures such as VLE, LLE and VSE, density, excess 
volume, excess enthalpy and critical loci, etc. Tested mixtures in- 
cluding organic compounds and macromolecules with or without 
the existence of association and details of comparison with data 
or with other models may be found in the paper cited. 

For NLF, MF-NLF and their universal group contribution ex- 
tensions, extensive comparison with these models and various 
phase equilibrium data have been made elsewhere [You et al., 
1994a, b, 1995, 1997a, b]. Thus, in this work, emphasis was given 
to an extensive comparison of NLF-ItB and MF-NLF-HB mod- 
els with the data of physical properties of 35 self-associated 
pure alcohols, and VLE, excess volume and excess elXhalpy of  
20 mL, ced hydrocarbon-alcohol systems. Results demonsb-ated 
that the two approaches (i.e., NLF-HB and MF-NLF-HB) equb 
valently fit various experimental data qualtitatively enough. W% 
omit here detailed illusb-ation; however, the new lattice-fluid EOSs 
with the combination of hydrogen bonding theory after Veytsman 
[Veytsman, 1993] fit associated mixtures well. 
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Fig. 7. Calculated isobaric T-x-y equilibria for heptane/ethanol 
at 101.3 kPa by MF-NLF-HB EOS (~2=0357). 

C O N C L U S I O N  

Lattice-fluid theories mainly developed by the present authors 
in recent years were reviewed and compared with data of var- 
ious pure fluids and binary mL,{ka-es. In particular, we found that 
the new two EOSs with hydrogen bonding contribution can be 
quantitatively applicable to mixtures by associatiort 
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